This Pilot's Operating Handbook must remain in the aircraft and be accessible to the pilot at all times.
Dear Stream Owner,

Congratulations on the purchase of your STREAM LSA Aircraft. This Aircraft is a result of many years of development at our Company and belongs to the European top in its category.

Thanks to its outstanding performance, the STREAM is nearing the GA Category, however, it can count itself as a significantly more economical and user-friendly Aircraft.

We at TL-ULTRALIGHT believe that this Aircraft will serve you for many years and to your full satisfaction. This Pilot's Operating Handbook and information contained within should largely contribute to this. The Handbook provides information on operation of the Aircraft, as well as its maintenance. The engine, propeller and possibly the safety system operations manuals are an integral part of this Handbook.

Jiří Tlustý
Manufacturer:

TL-ULTRALIGHT s.r.o.
Letiště 515, Pouchov
503 41 Hradec Králové
CZECH REPUBLIC

www.tl-ultralight.com

Aircraft Registration Number:

Date of Issue: ..

List of Revisions:

<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Revised Pages</th>
<th>Type of Revision</th>
<th>Revised By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>07.04.2017</td>
<td>-</td>
<td>Original Issue</td>
<td>-</td>
</tr>
</tbody>
</table>

TABLE OF CONTENTS

1. GENERAL INFORMATION
2. LIMITATIONS
3. EMERGENCY PROCEDURES
4. NORMAL PROCEDURES
5. PERFORMANCE
6. WEIGHT, BALANCE AND LIST OF EQUIPMENT
7. DESCRIPTION OF THE AIRCRAFT AND SYSTEMS
8. GROUND OPERATION
9. SUPPLEMENTS
1. GENERAL INFORMATION

TABLE OF CONTENTS

1.1 Introduction ... 1-2
1.2 Warnings, Cautions and Notes 1-3
1.3 Aircraft .. 1-4
 1.3.1 Basic Dimensions 1-4
 1.3.2 Three-View Drawing 1-5
1.1 Introduction

READ BEFORE FIRST FLIGHT!

CAUTION

A copy of this Handbook is issued with each Aircraft and is required to remain in the Aircraft and be available to the pilot at all times.

CAUTION

Each pilot of this Aircraft must read and understand the operations information and restrictions of this Aircraft.

The Aircraft’s installed components operations and maintenance instructions, i.e. engine, parachute safety system, propeller, avionics and other installed components instructions, can be found in manuals issued by the components’ respective Manufacturers. In case of contradicting information contained in this Handbook in relation to other manuals, the information listed in the respective installed components manual supersedes the information found in this Handbook.

CAUTION

The POH does not intend to and cannot replace properly qualified ground or in-flight instruction by an certified flight instructor (CFI).

WARNING

This Aircraft is designed solely for operations in VFR / VMC flight conditions. All acrobatic maneuvers including intentional spins are strictly forbidden.
1.2 Warnings, Cautions and Notes

The following definitions of alert are used in the text of this Handbook:

WARNING

For information that may prevent threat to the crew and their life.

CAUTION

For information that may prevent damage to the Aircraft and its equipment.

NOTE

For information of other special importance to the pilot.
1.3 Aircraft

The STREAM is an aerodynamically controlled tandem two-seater low-wing, with a three-wheel retractable landing gear and a steerable nose gear wheel. The Aircraft's airframe is a composite shell with a UV resistant kevlar, carbon and glass fiber reinforcement, with an inner foam core forming a "sandwich" structure.

1.3.1 Basic Dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Dimensions:</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>6.79 m</td>
</tr>
<tr>
<td>Wing Span</td>
<td>9.00 m</td>
</tr>
<tr>
<td>Height</td>
<td>2.48 m</td>
</tr>
<tr>
<td>Wing:</td>
<td></td>
</tr>
<tr>
<td>Root Rib Chord</td>
<td>1.80 m</td>
</tr>
<tr>
<td>Wing Root Chord</td>
<td>1.30 m</td>
</tr>
<tr>
<td>Wingtip Rib Chord</td>
<td>0.70 m</td>
</tr>
<tr>
<td>Wing Area</td>
<td>9.96 m²</td>
</tr>
<tr>
<td>Wing Aspect Ratio</td>
<td>8.13</td>
</tr>
<tr>
<td>Mean Aerodynamic Chord (MAC)</td>
<td>1.199 m</td>
</tr>
<tr>
<td>Wing Dihedral Angle</td>
<td>5°</td>
</tr>
<tr>
<td>Flap:</td>
<td></td>
</tr>
<tr>
<td>Flap Surface</td>
<td>0.6 m²</td>
</tr>
<tr>
<td>Flap Deflection – half position during extension</td>
<td>10°</td>
</tr>
<tr>
<td>Flap Deflection – half position during retraction</td>
<td>20°</td>
</tr>
<tr>
<td>Flap deflection - full</td>
<td>30°</td>
</tr>
<tr>
<td>Aileron:</td>
<td></td>
</tr>
<tr>
<td>Aileron Surface</td>
<td>0.23 m²</td>
</tr>
<tr>
<td>Aileron Deflection - Up</td>
<td>25°</td>
</tr>
<tr>
<td>Aileron Deflection - Down</td>
<td>12°</td>
</tr>
<tr>
<td>Horizontal Tail Surfaces:</td>
<td></td>
</tr>
<tr>
<td>Span</td>
<td>2.96 m</td>
</tr>
<tr>
<td>Elevator Deflection - Up</td>
<td>22.5°</td>
</tr>
<tr>
<td>Elevator Deflection - Down</td>
<td>17.5°</td>
</tr>
<tr>
<td>Vertical Tail Surface:</td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td>0.995 m</td>
</tr>
<tr>
<td>Rudder Deflection</td>
<td>± 30°</td>
</tr>
</tbody>
</table>
1.3.2 Three-View Drawing

All dimensions listed in millimeters.
2. LIMITATIONS

TABLE OF CONTENTS

2.1 Speed Limits
 2.1.1 Marking of the Speed Ranges on the Speed Indicator
 2.1.2 Flight Speed Limits
 2.1.3 Stall Speeds
2.2 Powerplant Limitations
2.3 Operational Load Factors
2.4 Weight Limitations
2.5 Centre of Gravity
2.6 Permitted Maneuvers
2.7 Crew
2.8 Permitted Types of Operation
2.9 Fuel
 2.9.1 Approved Fuel Types
 2.1.1 Fuel Tank Capacity
2.10 Ambient Temperatures Limitations
2.11 Other Limitations
2.12 Maximum Permissible Wind Speeds
2.1 Speed Limits

NOTE

The speeds listed are valid for the maximum permitted weight at sea level and under MSA conditions.

All speeds listed in this Handbook are indicated (IAS). The calibration table can be used to convert to real speed, see Chapter 5.1.

2.1.1 Marking of the Speed Ranges on the Speed Indicator

<table>
<thead>
<tr>
<th>MARKING</th>
<th>IAS (knots)</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Arch</td>
<td>37 - 66</td>
<td>Operating range with flaps. The Lower limit is the maximum weight V_{S0} in landing configuration The upper limit is the maximum permissible speed with flaps extended to max. angle (landing setting)</td>
</tr>
<tr>
<td>Green Arch</td>
<td>59 - 139</td>
<td>Normal operating range. The lower limit is the V_{S} at maximum permissible weight at foremost position of the CG. The upper limit is the maximum cruise speed.</td>
</tr>
<tr>
<td>Yellow Arch</td>
<td>139 - 185</td>
<td>Caution Range. Maneuvering must be done with increased caution and in calm air only.</td>
</tr>
<tr>
<td>Red Line</td>
<td>185</td>
<td>Never exceed speed. Maximum speed for all operations.</td>
</tr>
</tbody>
</table>

The above listed speeds are valid for flights with maximum permitted weight, at sea level and under the MSA conditions.

2.1.2 Flight Speed Limits

<table>
<thead>
<tr>
<th>V</th>
<th>SPEED</th>
<th>IAS (knots)</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{NE}</td>
<td>Never exceed speed</td>
<td>185</td>
<td>Do not exceed this speed at any stage of the flight.</td>
</tr>
<tr>
<td>V_{A}</td>
<td>Maneuver speed</td>
<td>96</td>
<td>Do not use full deflections of control surfaces. Do not make sudden and abrupt control changes.</td>
</tr>
<tr>
<td>V_{RA}</td>
<td>Maximum speed in strong turbulence</td>
<td>139</td>
<td>Do not exceed this speed in strong turbulence.</td>
</tr>
<tr>
<td>V_{FE}</td>
<td>Maximum extended flap speed: Small (takeoff) flaps: Big (landing) flaps:</td>
<td>78 66</td>
<td>Do not exceed this speed with flaps extended. Damage to the flap extension mechanism due to aero dynamical forces may occur.</td>
</tr>
<tr>
<td>V_{LO}</td>
<td>Maximum permissible speed for landing gear manipulation</td>
<td>78</td>
<td>Do not exceed this speed with the landing gear down. Damage to the landing gear and its retracting mechanisms due to aero dynamical forces may occur.</td>
</tr>
</tbody>
</table>

The above listed speeds are valid for flights with maximum permitted weight, at sea level and under the MSA conditions.
2.1.3 Stall Speeds

<table>
<thead>
<tr>
<th>V</th>
<th>SPEED</th>
<th>IAS</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS</td>
<td>Stall speed (no flaps)</td>
<td>59</td>
<td>Maintain your speed safely above this limit when operating with no flaps.</td>
</tr>
<tr>
<td>VS1</td>
<td>Stall speed (flaps fully extended)</td>
<td>37</td>
<td>Maintain your speed safely above this limit when operating with flaps fully extended.</td>
</tr>
</tbody>
</table>

The above listed speeds are valid for flights with maximum permitted weight, at sea level and under the MSA conditions.

2.2 Powerplant Limitations

<table>
<thead>
<tr>
<th>Engine Type</th>
<th>ROTAX 912 UL</th>
<th>ROTAX 912 ULS</th>
<th>ROTAX 912 iS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum takeoff</td>
<td>59.6 kW (80 HP)</td>
<td>73.5 kW (100 HP)</td>
<td>73.5 kW (100 HP)</td>
</tr>
<tr>
<td>Maximum continuous</td>
<td>58 kW (77.8 HP)</td>
<td>69 kW (93 HP)</td>
<td>69 kW (93 HP)</td>
</tr>
<tr>
<td>Rotations:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum takeoff rotations limit</td>
<td>5800 RPM (5 min.)</td>
<td>5800 RPM (5 min.)</td>
<td>5800 RPM (5 min.)</td>
</tr>
<tr>
<td>Maximum continuous rotations</td>
<td>5500 RPM</td>
<td>5500 RPM</td>
<td>5500 RPM</td>
</tr>
<tr>
<td>Oil Pressure:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>7 bar (102 psi)</td>
<td>7 bar (102 psi)</td>
<td>7 bar (102 psi)</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,8 bar (12 psi)</td>
<td>0,8 bar (12 psi)</td>
<td>0,8 bar (12 psi)</td>
</tr>
<tr>
<td>Oil Temperature:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>140°C (285°F)</td>
<td>130°C (266°F)</td>
<td>130°C (266°F)</td>
</tr>
<tr>
<td>Minimum</td>
<td>50°C (120°F)</td>
<td>50°C (120°F)</td>
<td>50°C (120°F)</td>
</tr>
<tr>
<td>Cylinder head temperature:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max cylinder head temperature</td>
<td>150°C (300°F)</td>
<td>135°C (284°F)</td>
<td>-</td>
</tr>
<tr>
<td>Coolant temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max coolant temperature</td>
<td>120°C (248°F)</td>
<td>120°C (248°F)</td>
<td>120°C (248°F)</td>
</tr>
<tr>
<td>Engine start, operating ambient temperature:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>50°C (120°F)</td>
<td>50°C (120°F)</td>
<td>50°C (120°F)</td>
</tr>
<tr>
<td>Minimum</td>
<td>-25°C (-13°F)</td>
<td>-25°C (-13°F)</td>
<td>-25°C (-13°F)</td>
</tr>
<tr>
<td>Fuel pressure:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>0.4 bar (5.8 psi)</td>
<td>0.4 bar (5.8 psi)</td>
<td>3.2 bar (45 psi)</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.15 bar (2.2 psi)</td>
<td>0.15 bar (2.2 psi)</td>
<td>2.8 bar (42 psi)</td>
</tr>
</tbody>
</table>
For more information, please see the powerplant documentation supplied with the Aircraft.

WARNING

The pilot is always required to opt for such height and flight path, so that at all times he is be able to make a safe emergency landing in case of engine failure.

2.3 Operational Load Factors

Maximum permissible load factors: no flaps: +4g, -2g
with flaps: +2g

2.4 Weight Limitations

Maximum takeoff weight of the Aircraft with no safety system	450 kg
Maximum takeoff weight of the Aircraft with a safety system	472.5 kg
Maximum load per seat	90 kg
Minimum pilot's weight for solo flights (solo flights from front seat only)	60 kg
Maximum luggage weight in the front luggage compartment	10 kg
Maximum luggage weight in the back luggage compartment	15 kg

NOTE

The empty weight of the particular Aircraft and its payload distribution options are listed on the label located in the Aircraft’s cockpit.
2.5 Center of Gravity

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Front CG limit</td>
<td>15 % SAT</td>
</tr>
<tr>
<td>Rear CG limit</td>
<td>35 % SAT</td>
</tr>
</tbody>
</table>

NOTE

For more information on determining the specific configuration of the Aircraft, please see Chapter 6 of this Handbook.

2.6 Permitted Maneuvers

This Aircraft is not approved for aerobatic operation. An aerobatic maneuver is an intentional maneuver involving an abrupt change in an aircraft’s altitude, an abnormal altitude, or abnormal acceleration, not necessary for normal flight. The maximum allowed bank angle in a sharp turn is 60 °.

WARNING

All aerobatic maneuvers, intentional stalls and spins are prohibited!

2.7 Crew

| Maximum number of people onboard | 2 persons |

2.8 Permitted Types of Operation

The aviation regulations as well as the Aircraft’s equipment limit the Aircraft’s operation to flights in VFR day conditions only.
Only VFR flying with visual land reference is permitted. IFR flying and flying in clouds are forbidden. Flying in icing conditions is forbidden.

2.9 Fuel

2.9.1 Approved Fuel Types

Natural 95 unleaded automotive gasoline (standard fuel for spark-ignition engines, ASTM D 4814) or AVGAS 100 LL.

Using unleaded AVGAS fuel will increase the engine wear. Therefore, use AVGAS only if no other approved fuel is available. For more detailed information, please refer to the ROTAX powerplant documentation supplied with the Aircraft.

2.9.2 Fuel Tank Capacity

| Fuselage fuel tank capacity | 90 l |
| Unusable fuel amount | 1,5 l |

2.10 Ambient Temperatures Limitations

| Maximum ambient temperature | 45 °C |
| Minimum ambient temperature | -25 °C |

The above listed maximum ambient temperature is valid for Aircraft white painted outer surfaces only. It is necessary to consider raised Aircraft surface temperature in differently painted Aircraft.
2.11 Other Limitations

WARNING

Smoking onboard is prohibited.

WARNING

Solo flights are allowed from the front seat only.

CAUTION

Strong rain or extreme humidity may somewhat reduce the Aircraft’s performance. When flying in extreme humidity or rain, we recommend that you increase your takeoff and landing speed by approximately 5.5 knots.
2.12 Maximum permissible wind speeds

Maximum permissible wind speeds (m/s) with vectors for performing takeoff are listed in the diagram below:
3. EMERGENCY PROCEDURES

OBSAH

3.1 Important speeds during emergency procedures
3.2 Engine Failure and emergency landings
 3.2.1 Engine failure during take-off roll (abort)
 3.2.2 Engine failure immediately after take-off
 3.2.3 Engine failure during flight
 3.2.4 Engine restart during flight
 3.2.5 Emergency landing into terrain
 3.2.6 Carburetor icing
3.3 Fires
 3.3.1 Engine fire during start:
 3.3.2 Engine fire on ground
 3.3.3 Engine fire during take-off
 3.3.4 Engine fire in flight
 3.3.5 Fire in cockpit (electric)
3.4 Forced precautionary landing (with engine power)
3.5 Landing with damaged extended landing gear
3.6 Emergency gear extension
3.7 Power unit vibrations
3.8 Loss of oil pressure in power unit
3.9 Unexpected icing encounter
3.10 Extreme turbulence encounter
3.11 Inadvertent stall, spiral, spin recovery
 3.11.1 Inadvertent stall recovery
 3.11.2 Inadvertent spiral recovery
 3.11.3 Inadvertent spin recovery
3.12 Aircraft parachute rescue system
 3.12.1 Rescue system activation procedure
 3.12.2 Rescue system activation
 3.12.3 Rescue system activation above water surface
3.1 Important speeds during emergency procedures

Never Exceed Speed: 185 knots IAS
Stall Speed (No Flaps): 59 knots IAS
Stall Speed (Full Flaps): 37 knots IAS

3.2 Engine Failure and emergency landings

3.2.1 Engine failure during take-off roll (abort)

1. Throttle……………………………………………………………………..IDLE
2. Ignition switch…………………………………………………………OFF
3. Main switch…………………………………………………………OFF
4. Brakes……………………………………………………APPLY AS REQUIRED

3.2.2 Engine failure immediately after take-off

1. Airspeed…………………………………………………………78 knots IAS
2. Land…………………………below 150 ft – straight ahead, if possible above 150 ft – select suitable ground (closest suitable ground free of obstacles)
3. Ignition switch…………………………………………………………OFF
4. Fuel valve…………………………………………………………………OFF
5. Wing flaps……………………………………………………DEFLECT AS REQUIRED
6. Landing gear…………………………………………………………DOWN
7. Main switch………………………………………………………………OFF
8. Harnesses…………………………………………………………TIGHTEN
9. Brakes……………………………………………………After touchdown AS REQUIRED

CAUTION

Perform landing on main landing gear wheels.
Nose gear should be continuously relieved as much as possible by the use of elevator.
3.2.3 Engine failure during flight

1. Airspeed………………………………………………………78 knots IAS
2. Trim control……………………………………………………TRIM AS REQUIRED
3. Emergency landing ground selection………………………SELECT

NOTE

As per situation, check the position of the switches and the fuel valve. Proceed according to flight altitude by either in-flight restart of the engine (Chapter 3.2.4) or by emergency landing into terrain (Chapter 3.2.5).

3.2.4 Engine restart during flight

1. Airspeed………………………………………………………78 knots IAS
2. Main switch………………………………………………………ON
3. Fuel valve………………………………………………………ON, fuel level check
4. Auxiliary fuel pump……………………………………………ON
5. Choke………………………………………………………OPEN (only when engine cold)
6. Throttle………………………………………………………IDLE (when choke opened, otherwise 1/3)
7. Ignition switch…………………………………………………ON
8. Starter…………………………………………………………ON

NOTE

Should engine restart fail, increase airspeed (81 – 97 knots IAS) and repeat the whole procedure.

WARNING

Abort the engine restart procedure at sufficient altitude and proceeded to emergency landing onto a suitable ground (as per Chapter 3.2.5)
3.2.5 Emergency landing into terrain

1. Airspeed..78 knots IAS
2. Landing ground selection.................below 150 ft – straight ahead, if possible
 above 150 ft – choose a suitable landing ground (closest suitable obstacle-free ground, and if possible, against wind, possibly against a slope)
3. Ignition switch..OFF
4. Fuel valve..OFF
5. Wing flaps..DEFLECT AS REQUIRED
6. Landing gear..DOWN
7. Main switch..OFF
8. Harnesses..TIGHTEN
9. Brakes..after touchdown AS REQUIRED

CAUTION

Perform landing on main landing gear wheels. Nose gear should be continuously relieved as much as possible by the use of elevator.

NOTE

Perform landing onto a difficult, soft and greatly uneven terrain with the landing gear retracted. It is highly probable that this way the aircraft will not flip onto its back and smaller damage to the aircraft will occur.
3.2.6 Carburetor icing

1. Airspeed……………………………………………………………78 knots IAS
2. Throttle…………………………By switching regimes try and eliminate power loss
3. Icing area………………………………………………….DEPART (if possible)
4. Throttle…………………………After 1 – 2 min gradually increase the engine power to cruise

CAUTION

Should the engine power not be renewed, land at nearest airport or onto a different, suitable ground.

3.3 Fires

3.3.1 Engine fire during start:

1. Starter………………………………………………………CONTINUE CRANKING

 If engine starts:

 2. Power………………………………………………………2000 RPM
 3. Fuel valve…………………………………………………..OFF

 After engine stops:

 4. Main switch and ignition……………………………………OFF
 5. Fire extinguisher…………………………………………..USE AS REQUIRED
 6. Aircraft…………………………………………………INSPECT FOR DAMAGE

 If engine fails to start

 7. Throttle………………………………………………………FULL OPEN
 8. Starter………………………………………………………CONTINUE CRANKING
 9. Ignition switch………………………………………………OFF
 10. Fuel valve……………………………………………………..OFF
 11. Main switch…………………………………………………..OFF
12. Fire extinguisher……………………………………………...PREPARE
13. Aircraft……………………...EVACUATE
14. Fire extinguisher……………………………………USE AS REQUIRED
15. Aircraft………………………………………………INSPECT FOR DAMAGE

WARNING

Do not perform another flight until the cause of the fire has been found and removed.

3.3.2 Engine fire on ground

1. Fuel valve…………………………………………………………...OFF
2. Throttle…………………………………………………………FULL OPEN
3. Ignition switch………………………………………………OFF
4. Main switch………………………………………………OFF
5. Aircraft……………………………………………………EVACUATE
6. Fire extinguisher……………………………………USE AS REQUIRED
7. Aircraft………………………………………………INSPECT FOR DAMAGE

WARNING

Do not perform another flight until the cause of the fire has been found and removed.
3.3.3 Engine fire during take-off

1. Throttle………………………………………………………….IDLE
2. Fuel valve…………………………………………………………..OFF
3. Landing ground selection……………………..straight ahead or onto a different, suitable ground
4. Brakes…………………………………..After touchdown AS REQUIRED

After aircraft stopping

5. Ignition switch…………………………………..………..OFF
6. Aircraft…………………………………………..EVACUATE
7. Fire extinguisher…………………………….USE AS REQUIRED
8. Aircraft………………………………..INSPECT FOR DAMAGE

WARNING

Do not perform another flight until the cause of the fire has been found and removed.

3.3.4 Engine fire in flight

1. Fuel valve…………………………………………………………..OFF
2. Throttle……………………………………………………FULL OPEN
3. Airspeed………………………………………………INCREASE (try and put the flames out by increasing airspeed)

WARNING

Do not exceed V_{NE}!

4. Landing ground selection……………………Closest airport or a different, suitable ground to perform emergency landing
5. Ignition switch………………………………………………..OFF
6. Airspeed………………………………………………………….78 knots IAS
7. Wing flaps………………………………………………DEFLECT AS REQUIRED
8. Landing gear………………………………………………DOWN
CAUTION

Perform landing on main landing gear wheels. Nose gear should be continuously relieved as much as possible by the use of elevator.

NOTE

Perform landing onto a difficult, soft and greatly uneven terrain with the landing gear retracted. It is highly probable that this way the aircraft will not flip onto its back and smaller damage to the aircraft will occur.

NOTE

Should the situation not allow for a sufficient time period to perform complete opening of the landing gear (approx. 20 seconds), make landing into terrain with the landing gear closed (smaller damage to the aircraft may occur)

9. Main switch………………………………………………….OFF
10. Harnesses………………………………………………………TIGHTEN
11. Brakes………………………………After touchdown AS REQUIRED

After aircraft stopping

12. Aircraft……………………………………………..EVACUATE
13. Fire extinguisher……………………………………USE AS REQUIRED
14. Aircraft………………………………….INSPECT FOR DAMAGE

WARNING

If you managed to put out the revealed fire, do not attempt to restart the engine in flight.

WARNING

Do not perform another flight until the cause of the fire has been found and removed.
3.3.5 Fire in cockpit (electric)

1. Air vents………………………………FULLY OPEN (to remove smoke from the cockpit)
2. Instruments…………………………ALL UNNECESSARY OFF
3. Landing………………………………AS SOON AS POSSIBLE
4. Aircraft……………………………………….EVACUATE
5. Fire extinguisher……………………….USE AS REQUIRED
6. Aircraft……………………………………..INSPECT FOR DAMAGE

WARNING

Do not perform another flight until the cause of the fire has been found and removed.

3.4 Forced precautionary landing (with engine power)

1. Landing ground…………………………SELECT GROUND
2. Airspeed………………………………………76 knots IAS
3. Flyby over selected ground………………PERFORM at appropriate altitude (to review landing ground)
4. Small circuit…………………………PERFORM under constant visual with landing ground
5. Wing flaps…………………………SMALL (in downwind position)
6. Landing gear……………………………DOWN

NOTE

Perform landing onto a difficult, soft and greatly uneven terrain with the landing gear retracted. It is highly probable that this way the aircraft will not flip onto its back and smaller damage to the aircraft will occur.

Standard landing approach should follow with landing on a selected ground.

6. Brakes……………………………………APPLY AS NECESSARY
Perform landing on main landing gear wheels.
Nose gear should be continuously relieved as much as possible by the use of elevator.

3.5 Landing with damaged extended landing gear

Use standard approach and landing procedure

1. Harnesses..TIGHTEN
2. Instruments.. ALL UNNECESSARY OFF
3. Touchdown..PERFORM using controls, so that the damaged part of the landing gear remains above ground for as long as possible during landing

After aircraft stopping

4. Instruments..OFF
5. Ignition switch...OFF
6. Main switch... OFF
7. Fuel valve... OFF
8. Aircraft...EVACUATE

Perform landing on main landing gear wheels.
Nose gear should be continuously relieved as much as possible by the use of elevator.
3.6 Emergency gear extension

In case of retractable landing gear hydraulic power unit failure, it is possible to manually extend the landing using the emergency pump. The emergency pump handle is located in the front pilot’s compartment, on the left side of the instrument panel.

Prior to initiating the emergency gear extension procedure, check the circuit breaker of the landing gear’s electric circuit. It is located on the central console in the pilot’s compartment. Should the circuit breaker be disconnected, attempt to turn it on by applying pressure. If the circuit breaker keeps disconnecting repeatedly, proceed to the below described emergency gear extension procedure.

1. Airspeed..............................REDUCE to 76 knots IAS
2. Wing flaps..............................SMALL (check position)
3. Gear control..............................into DOWN position
4. Emergency gear extension pump.................................PUMP

To ensure full extension of the landing gear during the emergency regime, it is necessary to pump the hydraulic system with approx. 70 to 75 movements of the emergency pump handle. Towards the end of the pumping, the resistance will increase and the system will be pressurized. Finish the pumping only once the gear position indicator consistently signals fully extended gear.

5. Landing.................................AS SOON AS POSSIBLE at nearest suitable airport

CAUTION

Perform landing as per procedure described in Chapter 3.5 Landing with damaged extended landing gear. On your way to airport, make sure to not exceed the maximum permissible speed for gear manipulation V_{LO}.
WARNING

Do not perform another flight until the cause of fault has been found and corrected.

3.7 Power unit vibrations

1. Engine RPM………………SET to value at which the vibrations are minimal
2. Landing…………………… AS SOON AS POSSIBLE including the outside of airport emergency landing

3.8 Loss of oil pressure in power unit

CAUTION

Should the oil pressure drop, or should it drop below the minimum permitted amount, it is necessary to suspect that engine failure may occur.

1. Throttle………………………………..REDUCE engine power
2. Landing………………………… AS SOON AS POSSIBLE including the outside of airport emergency landing

3.9 Unexpected icing encounter

1. Throttle………………..INCREASE POWER above cruising regime
2. Icing area…………………………..DEPART (if possible)
3.10 Extreme turbulence encounter

1. Airspeed……………….REDUCE to 91 – 108 knots IAS
2. Harnesses……………………………………TIGHTEN
3. Loose objects………………………………SECURE
4. Turbulent area…………………………DEPART (if possible)

3.11 Inadvertent stall, spiral, spin recovery

3.11.1 Inadvertent stall recovery

WARNING

During a normally performed flight, a stall should not occur. Intentional stalls are prohibited.

1. Airspeed………………PUSH-DOWN to increase airspeed
2. Throttle……………….GRADUALLY INCREASE engine power

NOTE

Altitude loss is 150 – 200 ft (50 – 60m).

NOTE

Once the stall has been recovered to a steady horizontal flight, continue as per normal conditions.
3.11.2 Inadvertent spiral recovery

WARNING

During a normally performed flight, a spiral should not occur. **Intentional spirals are prohibited.**

1. Throttle…………………………………………………………………………..IDLE
2. Controls……………………RECOVER ROLL applying opposite ailerons and rudder
3. Controls……………………apply elevator to recover aircraft into a horizontal flight

WARNING

Apply controls gently when recovering from descent. Abrupt control movements may result in exceeding of operational load factors and airframe overstressing.

NOTE

Once the spiral has been recovered to a steady horizontal flight, continue as per normal conditions.

3.11.3 Inadvertent spin recovery

WARNING

During a normally performed flight, a spin should not occur. **Intentional spins are prohibited.**

1. Throttle…………………………………………………………………………..IDLE
2. Ailerons…………………………………………………………………………..NEUTRAL
3. Rudder……………..APPLY FULL in opposite direction of rotation
4. Elevator………………………….. PULL FORWARD
5. Rudder…………………………..once rotation stops NEUTRAL
6. Elevator…………………..RECOVER GENTLY FROM DESCENT

NOTE

Once the spin has been recovered to a steady horizontal flight, continue as per normal conditions.

NOTE

The aircraft characteristics have not been tested for spins. The above described is a general procedure and for informative purposes only.

3.12 Aircraft parachute rescue system

The STREAM aircraft as standard comes with an aircraft parachute system located in the fuselage behind the rear luggage compartment. It improves crews’ chances of survival. The rescue system activation handle is normally installed under the instrument panel in the front pilot’s compartment and on the right under the instrument panel in the rear pilot’s compartment. It is necessary that each pilot reads and understands the installed rescue system’s operations manual.

WARNING

The aircraft parachute system can be considered as a crew rescue method should the aircraft get out of control.

CAUTION

When using the parachute rescue system, please take into account that the aircraft will be destroyed!
The proper functioning of the rescue system and its mounting is greatly affected by the weight of the aircraft. When activating the rescue system in an aircraft flying with a weight higher than the max. permitted take-off weight, overstressing of the airframe and malfunction of the rescue system may occur.

3.12.1 Rescue system activation procedure

WARNING

The following procedure contains recommended activities prior to actual rescue system activation. Should the situation (aircraft positioning, low altitude, etc.) require immediate reaction by activating the rescue system, activate the rescue system IMMEDIATELY without undertaking the below described pre-activation steps.

1. Airspeed…………………SLOW DOWN THE AIRCRAFT, if possible
2. Flight altitude…………….. min. 500 m above terrain, if possible
3. Ignition switch……………………………………………………………………OFF
4. Harnesses………………………………………………………………………..TIGHTEN

3.11.2 Rescue system activation

1. Rescue system activation handle………………PULL (approx. 11,5 kg)
 Once the aircraft fall has been stabilized by parachute (parachute inflation should take approx. 1.5 – 3.5 seconds)
2. Radio…………………………REPORT situation and position (121,5 MHz emergency frequency), if possible
3. Transponder……………………………………………………SET TO 7700, if possible
4. Emergency locator transmitter (ELT…………ACTIVATE, if possible
Prior to aircraft impact

5. Fuel valve..........................OFF, if possible
6. Main switch..................................OFF, if possible
7. Crew impact position.............PULL LIMBS CLOSE TO BODY and COVER FACE

WARNING

Maximum weight for aircraft parachute deployment: 472.5 kg.
3.11.3 Rescue system activation above water surface

If the rescue system is activated due to fire in flight, do not activate it immediately at high altitudes. If the conditions allow, attempt to descend to lower altitude and thus minimize the time, during which the fire could spread into the cockpit.

NOTE

Once the aircraft with the rescue system activated makes an impact onto the water surface, it is necessary to evacuate as soon as possible (before it sinks). Therefore, it is essential to prepare for fast evacuation prior to actual impact.

1. Rescue system activation handle..........PULL (approx. 11,5 kg)
 Once the aircraft fall has been stabilized by parachute (parachute inflation should take approx. 1.5 – 3.5 seconds)
2. Radio..............................REPORT situation and position (121,5 MHz emergency frequency), if possible
3. Transponder..................................SET TO 7700, if possible
4. Emergency locator transmitter (ELT).................................ACTIVATE, if possible

Prior to aircraft impact

5. Fuel valve..OFF, if possible
6. Main switch..OFF, if possible
7. Canopy..OPEN and move aside as much as possible
8. Harnesses...............................Prepare one hand on the harness lock
9. Crew impact position.........................PULL LIMBS CLOSE TO BODY and COVER FACE
4. NORMAL PROCEDURES

TABLE OF CONTENT

4.1 Preflight Inspection
 4.1.1 Cockpit 4-2
 4.1.2 Main Landing Gear – Left 4-3
 4.1.3 Left Wing 4-3
 4.1.4 Fuselage and Tail Surfaces 4-4
 4.1.5 Right Wing 4-4
 4.1.6 Main Landing Gear – Right 4-4
 4.1.7 Powerplant and Nose Gear 4-5

4.2 Operating Procedures
 4.2.1 Starting Engine 4-6
 4.2.2 Engine Warm-up and Run-up 4-7
 4.2.3 Taxi 4-7
 4.2.4 Prior to Take-off 4-8
 4.2.5 Take-off 4-8
 4.2.6 Climb 4-9
 4.2.7 Horizontal Flight 4-9
 4.2.8 Descent 4-9
 4.2.9 Downwind 4-10
 4.2.10 Baseleg 4-10
 4.2.11 Final 4-10
 4.2.12 Landing 4-11
 4.2.13 After Landing 4-11
 4.2.14 Engine Shutdown 4-12
 4.2.15 Post-flight Inspection 4-12

4.3 Go-around Procedure 4-13

4.4 Canopy Manipulation 4-13

4.5 Crew Movement During Boarding / Disembarking the Aircraft 4-14
4.1 Preflight Inspection

4.1.1 Cockpit

1. Main switch and ignition switch..........................OFF
2. Fuel valve..OFF
3. Upholstery and seats mounting...................Check condition and mounting
4. Harnesses..Check condition and mounting
5. Hand controls..............................Check freedom of movement
6. Foot controls (pedals)...............................Check freedom of movement

NOTE

Foot controls are connected with the controls of the nose gear. If the nose gear is not lifted, it will give out resistance.

7. Brakes...Check functionality
8. Engine controls..........................Check freedom of movement
9. Main switch ...ON
10. Trim..................Check functionality (Transverse and longitudinal)
11. Fuel gauge ...Check quantity
12. Flaps..Check functionality, SET FULL
13. Main switch..OFF
14. Canopy........Check condition, mounting, cleanness and locks

4.1.2 Main Landing Gear – Left

1. Gear leg and mounting.................................Check condition
2. Shock absorber........Check polyurethane segments condition, shock absorber plays and its mounting
3. Gear tire..................Check for wear and check tire pressure
4. Brake system.................................Check condition, sealing, functionality and wear of brake pads and brake discs
5. Gear control system.................................Check condition, sealing and wear
6. Aerodynamic covers (if installed).................Check condition and mounting

4.1.3 Left Wing

1. Wing surface and wing tip......Check for any damages and cracks
2. Wing tip lights cover...............Check condition and mounting
3. Aileron, mounting and drive..............Check condition, plays and freedom of movement
4. Flap, mounting and drive...............Check condition and plays
5. Flap slot cover (in the wing)...............Check condition and mounting
6. Pitot-static tube........Check condition, cleanness and mounting
4.1.4 Fuselage and Tail Surfaces

1. Fuselage surfaceCheck for any damages and cracks
2. Rescue system opening in rear fuselageCheck condition
3. Antennas and fuselage sensorsCheck condition and mounting
4. Luggage compartment doorsCheck mounting and locks
5. Tail surfacesCheck for any damages and cracks
6. Elevators and their driveCheck condition, plays and freedom of movement
7. Trimming tabs and their driveCheck condition, plays and freedom of movement
8. Lead balance elevator weightsCheck mounting
9. RudderCheck condition, plays and freedom of movement
10. Fuselage fuel tankCheck condition, seal and fuel qty

4.1.5 Right Wing

1. Wing surface and wing tipCheck for any damages and cracks
2. Wing tip lights coverCheck condition and mounting
3. Aileron, mounting and driveCheck condition, plays and freedom of movement
4. Transverse trim tabCheck condition, mounting and control
5. Flap, mounting and driveCheck condition and plays
6. Flap slot cover (in the wing)Check condition and mounting

4.1.6 Main Landing Gear – Right

1. Gear leg and mountingCheck condition
2. Shock absorberCheck polyurethane segments condition, shock absorber plays and its mounting
3. Gear tireCheck for wear and check tire pressure
4. Brake system…………………………Check condition, sealing, functionality and wear of brake pads and brake discs
5. Gear control system……………………Check condition, sealing and wear
6. Aerodynamic covers (if installed)……………………Check condition and mounting

4.1.7 Powerplant and Nose Gear

1. Top engine cowling……………………………………………Dismount
2. Engine………………………………………………………..Check overall condition
3. Engine mount and its mounting…………Check overall condition
4. Engine mount silentblocks ……………………..Check condition
5. Exhaust silencer and its mounting……..Check overall condition
6. Ignition system……………………………………………Check overall condition
7. Fuel system……………………Check overall condition and drain
8. Cooling system……………Check overall condition and coolant qty
9. Lubrication system…………Check overall condition and oil qty
10. Hydraulic landing gear system……..Check aggregate and other elements for leaks, damage and overall condition. Check hydraulic liquid qty.
11. Propeller and its controls……………Check overall condition
12. Nose gear………………………….Check condition and mounting
13. Nose gear tire…………………..Check for wear and check tire pressure
14. Nose gear control system……………Check condition, sealing and for wear
15. Top engine cowling……………………………Mount back
16. Engine cowlings…………………………….Check mounting

NOTE

Once you have completed the preflight inspection, set your flaps to up position and check the documentation of the aircraft, powerplant, propeller and parachute rescue system. Ensure that all mandatory documentation is present onboard.
4.2 Operating Procedures

4.2.1 Starting Engine

1. Preflight inspection

2. Canopy

CAUTION

Starting the engine or performing engine run-up with the canopy open may cause its damage.

3. Harnesses

4. Headsets

5. Fuel valve

6. Throttle

7. Choke

8. Main switch

9. Auxiliary fuel pump (if installed)

10. Auxiliary fuel pump

11. Check area around propeller

12. Brakes

13. Starter

NOTE

You can start the engine continuously for 10 seconds max. Then it is necessary to make a 2-minute cooling break.

Once the engine starts

14. Throttle

15. Choke

16. Instruments

17. Strobe lights

Done

CLOSED and SECURED

ADJUST and FASTEN

Put on and adjust

ON

IDLE

ON (for cold engine only)

ON

ON

Around prop CLEAR

ENGAGED

ENGAGE

2000 RPM

Slowly CLOSE

ON, monitor

ON
4.2.2 Engine Warm-up and Run-up

1. Warm-up engine to operating temp. 2000 RPM for 2 min minimum, then possible to gradually increase RPM
2. Engine instruments. Within operating limits
3. Brakes. ENGAGE
4. Throttle. Max. power, check
5. Throttle. 4000 RPM
6. Magnetos. Check, max. drop 300 RPM max. difference 120 RPM

WARNING

The engine run-up should only be performed on an aircraft that has been secured with wedges against movement, positioned against wind, in open space and with regard to safety of other persons.

CAUTION

Do not perform the engine run-up on rocky surfaces, which could result in damage to the propeller or aircraft.

4.2.3 Taxi

1. Area around aircraft. CLEAR
2. Brakes. Check function and use as required
3. Transponder (if installed). ON as required

WARNING

Frequent and intense braking may result in brake liquid overheating and the braking ability may be compromised. Regulate the taxi speed by use of throttle instead of wheel braking.
4.2.4 Prior to Take-off

1. Harnesses ...SECURE and tightened
2. Loose objects (including luggage compartments)SECURE
3. Rescue system safety pinsREMOVED
4. Canopy ..CLOSED and SECURE
5. Controls ..Freedom of movement
6. Instruments ..Monitor and check settings
7. Fuel gauge ..Check fuel qty
8. Fuel valve ..ON, check position
9. Trim (transverse and longitudinal)NEUTRAL
10. Landing gear control ..DOWN, check position
11. Flaps ..TAKEOFF position (small)
12. Takeoff runway and areaCLEAR
13. Radio ..Transmit

4.2.5 Take-off

1. Throttle ..FULL POWER
2. Lift off ...At 43 - 49 knots IAS
3. Airborne accelerationTo 65 knots IAS
4. Transition to climb modePrimary climb speed 70 knots IAS
5. Gear ...UP
6. Throttle ...Reduce power to max. 5500 RPM
7. Climb ..78 knots IAS
8. Flaps ..RETRACT above 150 ft AGL and when reaching 78 knots IAS
9. Trim ..As required

CAUTION

The maximum taxi speed is 8 knots. Avoid visibly rough surfaces, so that the landing gear is not being overstressed.
WARNING
Do not proceed to take-off, should the engine not run smoothly.

4.2.6 Climb

1. Throttle..SET TO max. 5200 RPM
2. Climb...81 knots IAS
3. Instruments..Monitor
4. Auxiliary fuel pump..........................OFF (if used during take-off)

4.2.7 Horizontal Flight

Enter into a horizontal flight

1. Throttle..4800 RPM, or as required
2. Airspeed..As required
3. Instruments..Monitor
4. Trim..As required

CAUTION
Continuously monitor the remaining fuel quantity during flight.

4.2.8 Descent

1. Throttle..As required
2. Instruments..Monitor
Avoid longer descent od IDLE. Powerplant subcooling and loss of usable power may occur.

4.2.9 Downwind

1. Throttle...Adjust for horizontal flight
2. Airspeed..92 – 103 knots IAS
3. Trim..As required
4. Instruments..Monitor
5. Fuel..Check qty and fuel valve position
6. Harnesses...FASTENED
7. Approach and landing area...CLEAR
8. Radio..Report

4.2.10 Baseleg

1. Throttle...Adjust for descent as required
2. Airspeed..76 knots IAS
3. Landing gear..DOWN (check)
4. Flaps..TAKEOFF position (small)
5. Trim..As required
6. Final approach area...CLEAR
7. Radio..Report

4.2.11 Final

1. Approach speed..65 knots IAS
2. Instruments..Monitor
3. Flaps..LANDING position (full)
4. Trim..As required
5. Landing area………………………………….CLEAR
6. Radio……………………………………………..Report

4.2.12 Landing

1. Throttle……………………………….IDLE, or as required
2. Airspeed……………………………………...59 knots IAS
3. Level off………………………………At 1 – 2 ft above ground
4. Airspeed…………………Gradually reduce until touchdown

CAUTION

Perform landing on main landing gear wheels.
Nose gear should be continuously relieved as much as possible by the use of elevator.

4.2.13 After Landing

1. Brakes……………………………………….Use as required
2. Flaps………………………………………..UP
3. Instruments…………………………….All unnecessary off
4. Rescue system safety pin…………………….INSERT

WARNING

Frequent and intense braking may result in brake liquid overheating and the braking ability may be compromised.
Regulate the taxi speed by use of throttle instead of wheel braking.
4.2.14 Engine Shutdown

1. Throttle…………………………………Cool engine off at 2000 RPM
2. Strobe lights………………………………………………………OFF
3. Transponder (if installed)…………………………………………OFF
4. Instruments……………………………………………………….OFF
5. Radio………………………………………………………………OFF
6. Ignition switch…………………………………………………OFF
7. Main switch……………………………………………………OFF
8. Fuel valve……………………………………………………….OFF
9. Canopy…………………………………………………………UNLOCK and open

NOTE

Once you disembark the aircraft, set brakes to parking position, tie down the aircraft or use another method of securing the aircraft against unwanted movement. For parking outside of covered areas, lock the controls.

CAUTION

When you leave the aircraft, close and lock the canopy. Do not leave the canopy opened. Damage to the aircraft may occur.

4.2.15 Post-flight Inspection

1. Overall aircraft condition…………………………………………..Check
2. Potential operating liquid leaks………………………………..Check and find cause
3. Pitot-static tube cover…………….Install, if no other flight planned
4. Vents……………………………………………………….Closed
4.3 Go-around Procedure

1. Throttle……………………………………Steadily maximum power
2. Flaps……………………………………TAKEOFF position (small)
3. Lift off………………………………………At 43 - 49 knots IAS
4. After lift-off acceleration…………………To 65 knots IAS
5. Trim……………………………………………..As required
6. Transition to climb mode………Primary climb speed 70 knots IAS
7. Gear……………………………………………….. UP
8. Throttle……………………………………Reduce power to max. 5500 RPM
9. Climb………………………………………………………78 knots IAS
10. Flaps……………………………………RETRACT above 150 ft AGL and when reaching 78 knots IAS
11. Trim…………………………………………………………As required

WARNING

Do not perform go-around, should the engine not run smoothly.

4.4 Canopy Manipulation

The STREAM aircraft comes with a sideways-opening canopy, enabling comfortable crew entry. The canopy is in its closed position secured at two points (by two mechanisms). Only complete securing using both mechanisms will ensure full lock of the canopy, against accidental opening in flight. It is necessary to undertake the following steps when closing the canopy prior to flight:

1. Check that all canopy contact surfaces are clear and remove any obstacles, which could prevent its complete closing (clothes, harnesses, headsets, etc.)
2. Move the canopy to its closed position
3. Secure the canopy in its closed position by rotating (forward) a pair of handles on the left side of the canopy
4. Check that the canopy is securely locked by applying mild pressure to the canopy
Should you encounter resistance in the canopy locking mechanisms, do not attempt to close the canopy by force. Damage to the locking mechanisms may occur. On the contrary, open the canopy again and inspect the contact surfaces for presence of any foreign objects, which could be preventing the closing. Ensure that both handles on the left side of the canopy are in their opened position when closing the canopy.

When parking the aircraft on the ground, do not leave the canopy in its opened position. Damage to the canopy caused by sudden gusts or damage to the upholstery above the instrument panel may occur (excessive local overheating of the upholstery caused by magnifying glass effect of the opened canopy’s transparent part).

4.5 Crew Movement During Boarding/Disembarking the Aircraft

Board the aircraft gradually, i.e. the second person waits until the first person is seated inside the cockpit. Excessive load on the step may result in tilting of the aircraft onto its rear fuselage and its damage. Proceed in like manner when disembarking the aircraft.
5. PERFORMANCE

TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Airspeed Indicator Calibration</td>
<td>5-2</td>
</tr>
<tr>
<td>5.2</td>
<td>Take-off Distances</td>
<td>5-3</td>
</tr>
<tr>
<td>5.3</td>
<td>Landing Distances</td>
<td>5-3</td>
</tr>
<tr>
<td>5.4</td>
<td>Rate of Climb</td>
<td>5-3</td>
</tr>
<tr>
<td>5.5</td>
<td>Horizontal Flight – Cruise Speed</td>
<td>5-3</td>
</tr>
<tr>
<td>5.6</td>
<td>Fuel Consumption</td>
<td>5-3</td>
</tr>
</tbody>
</table>
Flight performance information listed in this Chapter is valid for the standard aircraft version with a 472.5 kg max. take-off weight (including the parachute rescue system), standard flight technique and under MSA conditions. The actual performance may vary based on pilot’s experience, weather and aircraft’s condition. The standard aircraft version is equipped with a 100 HP 912 ULS ROTAX Engine and an in-flight adjustable PowerMax Propeller.

5.1 Airspeed Indicator Calibration (km/h)

<table>
<thead>
<tr>
<th>IAS (km/h)</th>
<th>Cruise Configuration</th>
<th>Take-off Configuration</th>
<th>Landing Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td></td>
<td></td>
<td>67,2</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>77,6</td>
<td>78,2</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>88,0</td>
<td>88,8</td>
</tr>
<tr>
<td>100</td>
<td>96,7</td>
<td></td>
<td>98,1</td>
</tr>
<tr>
<td>110</td>
<td>106,1</td>
<td></td>
<td>107,9</td>
</tr>
<tr>
<td>120</td>
<td>115,6</td>
<td></td>
<td>117,5</td>
</tr>
<tr>
<td>130</td>
<td>125,0</td>
<td></td>
<td>126,8</td>
</tr>
<tr>
<td>140</td>
<td>134,5</td>
<td></td>
<td>135,9</td>
</tr>
<tr>
<td>150</td>
<td>144,1</td>
<td></td>
<td>144,7</td>
</tr>
<tr>
<td>160</td>
<td>153,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>163,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>173,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>182,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>192,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>202,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>212,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>222,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>231,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>241,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>251,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>261,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>272,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>282,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>292,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>302,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>312,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>323,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>333,3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE

All speeds are shown in km/h.
1 km/h = 0,54 knot
1 knot = 1,852 km/h
5.2 Take-off Distances

Take-off roll distance: 175 m, max. power, small flaps, paved runway, Powermax Propeller

Take-off distance to clear a 15m high obstacle: 295 m, max. power, small flaps, paved runway, PowerMax Propeller

5.3 Landing Distances

Landing roll with braking (15 m obstacle): 300 m, adequate braking, dry paved RWY
Landing roll without braking (15 m obstacle): 335 m, no braking, dry paved RWY

5.4 Rate of Climb

Rate of Climb: 1023 ft/min at 81 knots, V_Y, max. power, PowerMax Prop

5.5 Horizontal Flight – Cruise Speed

Design cruise speed: 95 – 116 knots IAS (as per aircraft equipment)
Max. cruise speed: 119 knots IAS (65 % engine power, 4800 RPM)
Max. continuous horizontal flight speed: 135 knots IAS (V_H, max. continuous engine power, 5500 RPM)

5.6 Fuel Consumption

Max. power: 27,0 l/h
Max. continuous power: 25,0 l/h
75% continuous power: 18,5 l/h
65% continuous power: 16 l/h

For more information, please refer to the ROTAX Engine Operation Manual.
6. WEIGHT AND BALANCE

TABLE OF CONTENTS

6.1 Introduction 6-2
6.2 Permissible values and load arms 6-2
6.3 Prior to flight CG determination 6-2
6.4 Conditions for weighing the aircraft 6-6
6.5 Determining the weight and CG position of an empty aircraft 6-7
6.1 Introduction

It is the pilot's responsibility prior to every flight to ensure that the weight and balance limits are not exceeded and that the aircraft load is distributed and secured correctly.

It might be necessary at times to reduce the amount of fuel or luggage, in order to remain within the maximum permissible take-off weight limits and so that the final CG position stays within the permissible range throughout the whole flight. The maximum permissible take-off weight mustn't be exceeded under any circumstances.

6.2 Permissible values and load arms

The leading edge of the wing (root rib cross-section) has been used as the reference datum plane.

Permissible load values

<table>
<thead>
<tr>
<th>Load Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. take-off weight (with rescue parachute system)</td>
<td>472.5 kg</td>
</tr>
<tr>
<td>Max. seat load (front/back)</td>
<td>90 / 90 kg</td>
</tr>
<tr>
<td>Min. pilot weight (note: solo flights from front seat only)</td>
<td>60 kg</td>
</tr>
<tr>
<td>Max. main fuel tank weight (90 l)</td>
<td>64.8 kg</td>
</tr>
<tr>
<td>Max. luggage weight in the front luggage compartment</td>
<td>10 kg</td>
</tr>
<tr>
<td>Max. luggage weight in the back luggage compartment</td>
<td>15 kg</td>
</tr>
</tbody>
</table>

Dimensions

<table>
<thead>
<tr>
<th>Dimension Type</th>
<th>Indication</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean aerodynamic chord</td>
<td>MAC</td>
<td>1,199 m</td>
</tr>
<tr>
<td>Front wheel axis to the reference datum horizontal length</td>
<td>a</td>
<td>1,230 m</td>
</tr>
<tr>
<td>Main wheel axis to the reference datum horizontal length</td>
<td>b</td>
<td>0,615 m</td>
</tr>
<tr>
<td>Mean aerodynamic chord leading edge to reference datum length</td>
<td>c</td>
<td>0,062 m</td>
</tr>
</tbody>
</table>

Permissible flight CG limit

<table>
<thead>
<tr>
<th>Range Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissible flight CG limit in % MAC:</td>
<td>15 to 35 % MAC</td>
</tr>
</tbody>
</table>
Load Arms

<table>
<thead>
<tr>
<th>Load Type</th>
<th>Indication</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luggage arm in front luggage compartment</td>
<td>d_1</td>
<td>-0.689 m</td>
</tr>
<tr>
<td>Fuel arm in main fuel tank</td>
<td>d_2</td>
<td>0.062 m</td>
</tr>
<tr>
<td>Front seat crew arm</td>
<td>d_3</td>
<td>0.346 m</td>
</tr>
<tr>
<td>Back seat crew arm</td>
<td>d_4</td>
<td>1.368 m</td>
</tr>
<tr>
<td>Luggage arm in the back luggage compartment</td>
<td>d_5</td>
<td>1.861 m</td>
</tr>
</tbody>
</table>

Notice! The information contained in this document is for reference and information only. The pilot is the final and only responsible party for the safe operation of this aircraft.
6.3 Prior to flight CG determination

WARNING

It is the pilot's responsibility prior to every flight to ensure that the weight and balance limits shall not be exceeded during flight and that the aircraft load is distributed and secured correctly.

The empty aircraft weight has been set by the Manufacturer (please refer to The Test Flight Protocol of the individual aircraft). If any equipment has been added to (or removed from) the aircraft, or if any modification affecting the weight and empty aircraft CG position has been performed, it will be necessary to determine again the empty aircraft weight and CG position (as per Chapter 6.5). The results together with the dates of weighing must be recorded in the following table.

<table>
<thead>
<tr>
<th>Scaling No.</th>
<th>Empty Aircraft Weight (M_{LET}) [kg]</th>
<th>Center of Gravity Position</th>
<th>Scaling Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(L_{%\text{-LET}}) [m]</td>
<td>(X%\text{-LET}) [% MAC]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Record weights of all payload items into the following table and calculate their total sum:

<table>
<thead>
<tr>
<th>Load Type</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luggage in the front luggage compartment</td>
<td></td>
</tr>
<tr>
<td>Fuel in the main fuel tank</td>
<td></td>
</tr>
<tr>
<td>Crew in the front seat</td>
<td></td>
</tr>
<tr>
<td>Crew in the back seat</td>
<td></td>
</tr>
<tr>
<td>Luggage in the back luggage compartment</td>
<td></td>
</tr>
<tr>
<td>Total Payload (M_{UZIT})</td>
<td></td>
</tr>
</tbody>
</table>

Further determine the take-off weight of the selected configuration:

\[
M_{KON} = M_{LET} + M_{UZIT} \quad [\text{kg}]
\]
The determined take-off weight of the configuration mustn’t exceed the maximum permissible aircraft take-off weight (472.5 kg).

Further determine the moments of the individual loads:

Moment of luggage in the front luggage compartment:

\[MO_{\text{PREDNÍ ZÁV. PROSTOR}} = M_{\text{PREDNÍ ZÁV. PROSTOR}} \cdot d_1 \ [kg.m] \]

Moment of fuel mass in the main fuel tank:

\[MO_{\text{PALIVO}} = M_{\text{PALIVO}} \cdot d_2 \ [kg.m] \]

Moment of crew in the front seat:

\[MO_{\text{PREDNÍ SEDAČKA}} = M_{\text{PREDNÍ SEDAČKA}} \cdot d_3 \ [kg.m] \]

Moment of crew in the back seat:

\[MO_{\text{ZADNÍ SEDAČKA}} = M_{\text{ZADNÍ SEDAČKA}} \cdot d_4 \ [kg.m] \]

Moment of luggage in the back luggage compartment:

\[MO_{\text{ZADNÍ ZÁV. PROSTOR}} = M_{\text{ZADNÍ ZÁV. PROSTOR}} \cdot d_5 \ [kg.m] \]

Moment of empty aircraft:

\[MO_{\text{LET}} = M_{\text{LET}} \cdot X_{\text{LET}} \ [kg.m] \]

Sum all determined load moments together:

\[MO_{\text{KON}} = \sum MO \ [kg.m] \]
Determining the CG position of the configuration:

\[X_{%KON} = \left(\frac{M_{KON}}{M_{MAC}} \right) - c \times 100 \quad \text{[%MAC]} \]

WARNING

The determined CG position of the configuration must remain within the permissible flight CG position limits 15 – 35 %MAC.

6.4 Conditions for weighing the aircraft

For best results, weigh indoors (e.g. inside a hangar). The scales must be calibrated correctly and must be placed on a level ground.

Place a scale under each wheel of the aircraft. If only one scale is used, ensure that all wheels are at the same level prior to the weighing process (transverse and longitudinal axis). Remember that the aircraft must be properly leveled to ensure weighing accuracy (the firewall plane must be vertical).

Any equipment placed on the scales when weighing the aircraft, such as wheel chocks, must be additionally weighed separately and its weight deducted from the scale reading.

Be sure to remove any objects that are not part of the aircraft (e.g. tools, textile canopy covers, etc.) prior to weighing.

Ensure that the weighed aircraft is in a flight configuration (e.g. closed canopy, etc.).

The fuel tank should be empty, except for unusable fuel. If the fuel tank is not empty, then the exact amount of usable fuel in the tank must be determined. The weight of the fuel minus the unusable fuel must be deducted from the empty aircraft weight. Further it is necessary to take into account the moment of this load when determining the CG position of the empty aircraft (fuel arm to reference datum length is listed in Chapter 6.2).
The oil and coolant containers must be properly filled prior to weighing. These liquids necessary for standard aircraft operation are considered part of the aircraft’s empty weight.

CAUTION

In case of nonstandard aircraft equipment, it is necessary to determine the actual CG position using a separate formula, or by obtaining the take-off weight and the flight CG position as per procedure described in the following chapter.

6.5 Determining the weight and CG position of an empty aircraft

Prepare the aircraft as per instructions listed in Chapter 6.4.

Read the data on the scale placed under the main landing gear. You can obtain the total weight of main gear R_{MAIN} by summing up the data read on both scales placed under the main landing gear wheels.

Read the data on the scale placed under the front gear wheel R_{FRONT}

The total weight of the empty aircraft M_{LET} can be determined as per below:

$$ M_{LET} = R_{MAIN} + R_{FRONT} \ [kg] $$

Determine the empty aircraft CG position from the reference datum as per the below formula:

$$ L_{L-LET} = \frac{R_{MAIN} \cdot b - R_{FRONT} \cdot a}{M_{LET}} \ [m] $$

Calculate the empty aircraft CG position in %MAC:

$$ X_{%-LET} = \frac{L_{L-LET} - c}{MAC} \cdot 100 \ [%MAC] $$

The determined values of the empty aircraft weight M_{LET} [kg], empty aircraft CG position from the reference datum L_{L-LET} [m] and empty aircraft CG position in %MAC must be recorded in the table listed in Chapter 6.3.
7. **DESCRIPTION OF AIRCRAFT AND SYSTEMS**

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Aircraft</td>
<td>7-2</td>
</tr>
<tr>
<td>7.2 Fuselage</td>
<td>7-2</td>
</tr>
<tr>
<td>7.3 Wing</td>
<td>7-2</td>
</tr>
<tr>
<td>7.4 Landing Gear</td>
<td>7-2</td>
</tr>
<tr>
<td>7.5 Flight Controls</td>
<td>7-2</td>
</tr>
<tr>
<td>7.6 Powerplant</td>
<td>7-2</td>
</tr>
<tr>
<td>7.7 Fuel System</td>
<td>7-4</td>
</tr>
<tr>
<td>7.8 Pitot-static System</td>
<td>7-4</td>
</tr>
<tr>
<td>7.9 Electrical System</td>
<td>7-4</td>
</tr>
<tr>
<td>7.10 Elementary Cockpit Controls</td>
<td>7-5</td>
</tr>
</tbody>
</table>
7.1 Aircraft

The Stream is a single engine, two-place, cantilever low wing aircraft with a retractable tricycle landing gear. The aircraft is built made of composite materials.

7.2 Fuselage

The fuselage is designed as a clean laminate sandwich shell with bulkheads. In the front part of the fuselage is a powerplant mounted onto the engine firewall. Behind the firewall inside the fuselage is a two-place pilot’s compartment with seats in a tandem arrangement. The pilots are seated on a pair of two individual seats. There is a dual control (two sidesticks) located in the pilot’s compartment. Behind the pilot’s compartment is a rear luggage compartment accessible from the side of the fuselage and a rescue parachute system assembly.

7.3 Wing

The wing is an all-composite cantilever design. It is formed as a sandwich monocoque structure with ribs and spar. Fuselage mounting is done using semi-cantilever spars and rear spar hinges. The wing is fitted with ailerons and a double slotted wing flap.

7.4 Landing Gear

The landing gear is a tricycle design. The main wheels have polyurethane block suspension. The nose wheel uses a steel spring. The nose gear is steerable. The landing gear is fully retractable utilizing a hydraulic system equipped with an emergency pump. The landing gear can be equipped with aerodynamic covers. Main wheels are equipped with brakes and their size is 360 x 110 mm. The front wheel size is 290 x 100 mm.

7.5 Flight Controls

The aircraft is controlled using a combination of cables and rods. Aileron and elevator control is done by rods; rudder is controlled by cables. The transverse and longitudinal trim is controlled by a servomotor, the aerodynamic tabs are located on an elevator and a right aileron. The wing flaps are controlled electrically, using a servomotor located inside a fuselage. The main wheel brakes are controlled by small pedals as part of foot controls.

7.6 Powerplant

It is intended that more than one engine type will be used. The elementary engine types are ROTAX 912 UL, 912 ULS and 912 iS.
<table>
<thead>
<tr>
<th>Engine Type</th>
<th>ROTAX 912 UL</th>
<th>ROTAX 912 ULS</th>
<th>ROTAX 912 iS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. take-off performance</td>
<td>59.6 kW (80 HP)</td>
<td>73.5 kW (100 HP)</td>
<td>73.5 kW (100 HP)</td>
</tr>
<tr>
<td>Max. continuous performance</td>
<td>58 kW (77.8 HP)</td>
<td>69 kW (93 HP)</td>
<td>69 kW (93 HP)</td>
</tr>
<tr>
<td>RPM:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. take-off RPM limit</td>
<td>5800 RPM (5 min.)</td>
<td>5800 RPM (5 min.)</td>
<td>5800 RPM (5 min.)</td>
</tr>
<tr>
<td>Max. continuous RPM</td>
<td>5500 RPM</td>
<td>5500 RPM</td>
<td>5500 RPM</td>
</tr>
<tr>
<td>Oil pressure:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>7 bar (102 psi)</td>
<td>7 bar (102 psi)</td>
<td>7 bar (102 psi)</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.8 bar (12 psi)</td>
<td>0.8 bar (12 psi)</td>
<td>0.8 bar (12 psi)</td>
</tr>
<tr>
<td>Oil temperature:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>140°C (285°F)</td>
<td>130°C (266°F)</td>
<td>130°C (266°F)</td>
</tr>
<tr>
<td>Minimum</td>
<td>50°C (120°F)</td>
<td>50°C (120°F)</td>
<td>50°C (120°F)</td>
</tr>
<tr>
<td>Cylinder head temp.:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. cylinder head temp.</td>
<td>150°C (300°F)</td>
<td>135°C (284°F)</td>
<td>-</td>
</tr>
<tr>
<td>Coolant Temperature:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. coolant temp.</td>
<td>120°C (248°F)</td>
<td>120°C (248°F)</td>
<td>120°C (248°F)</td>
</tr>
<tr>
<td>Engine start, ambient operating temp.:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>50°C (120°F)</td>
<td>50°C (120°F)</td>
<td>50°C (120°F)</td>
</tr>
<tr>
<td>Minimum</td>
<td>-25°C (-13°F)</td>
<td>-25°C (-13°F)</td>
<td>-25°C (-13°F)</td>
</tr>
<tr>
<td>Fuel pressure:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>0.4 bar (5.8 psi)</td>
<td>0.4 bar (5.8 psi)</td>
<td>3.2 bar (45 psi)</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.15 bar (2.2 psi)</td>
<td>0.15 bar (2.2 psi)</td>
<td>2.8 bar (42 psi)</td>
</tr>
</tbody>
</table>

NOTE

For current and complete information, please refer to the ROTAX Engine Operation Manual supplied with the aircraft.

Several propeller types can be used in conjunction with the above powerplants, depending on successfully carried out flight tests. Main propeller types in use are:
Propeller Manufacturer:

<table>
<thead>
<tr>
<th></th>
<th>TL-ULTRALIGHT</th>
<th>DUC Hélices</th>
<th>Woodcomp</th>
</tr>
</thead>
</table>

Propeller Model:

<table>
<thead>
<tr>
<th></th>
<th>PowerMax</th>
<th>Swirl</th>
<th>SR3000</th>
</tr>
</thead>
</table>

Number of Blades:

| | 3 | 3 | 3 |

Propeller Type:

<table>
<thead>
<tr>
<th></th>
<th>In flight adjustable</th>
<th>On ground adjustable</th>
<th>In flight adjustable</th>
</tr>
</thead>
</table>

Propeller diameter (mm):

| | 1748 | 1740 | 1700 |

NOTE

For current information on the propeller, its installation and use, please refer to the documentation specified by the manufacturer.

7.7 **Fuel System**

The fuel system consists of a 90l fuel tank located in the front part of the fuselage center plane, fuel lines, fuel valve, fuel gauge and a fuel filter.

7.8 **Pitot-static System**

The pitot-static system uses a Prandtl tube located under the left half of the wing. The static pressure data is collected from the sides of the rear fuselage (or possibly otherwise based on different instruments). Channeling of the static and total pressure is done by polyethylene tubes.

7.9 **Electrical System**

The electrical system uses a 12 V DC voltage. The electrical system ensures functioning of the cockpit instruments, avionics, lights, trim tabs and of a wing flap drive. The electrical system also supplies the hydraulic retractable landing gear aggregate. Source is a 12V/ 8 Ah battery.
7.10 Elementary Cockpit Controls

The following illustration demonstrates standard elementary controls placement and aircraft cockpit equipment. Instrument panel equipment may vary based on customers’ requirements. Placement of optional equipment for a specific aircraft is listed in Chapter 9 of this Manual.

1. Transverse and longitudinal control sidestick
2. Transverse and longitudinal trim control
3. Front rudder pedal adjustment control
4. Cabin heat control
5. Fuel valve
6. Wing flaps control
7. Cabin ventilation ball valve
8. Landing gear control
9. Emergency gear extension handle
10. Manual propeller pitch control (if adjustable propeller installed)
11. Throttle lever
12. Front rudder control pedals
13. Rescue system activation handle
14. Gear extension system electrical circuit breaker
15. Choke
Back Rudder Pedal Adjustment Control
1. Back rudder pedal adjustment control

Rescue System Activation Handle
2. Rescue system activation handle

Transverse and Longitudinal Control Sidestick
3. Transverse and longitudinal control sidestick

Back Instrument Panel Mounted a Hinged Canopy Frame
4. Back instrument panel mounted a hinged canopy frame

Wing Flaps Control
5. Wing flaps control

Canopy Opening Handle
6. Canopy opening handle

Cabin Ventilation Ball Valve
7. Cabin ventilation ball valve

Throttle Lever
8. Throttle lever

Manual Propeller Pitch Control (if Adjustable Propeller Installed)
9. Manual propeller pitch control (if adjustable propeller installed)

Back Rudder Control Pedals
10. Back rudder control pedals

Transverse and Longitudinal Trim Control
11. Transverse and longitudinal trim control
8. GROUND HANDLING

TABLE OF CONTENTS

8.1 Ground Handling
8.1.1 Ground Handling the Aircraft 8-2
8.1.2 Parking 8-2
8.1.3 Tie-down 8-3
8.1.4 Refueling Procedure 8-3
8.1.5 Checking the Oil Level in the Powerplant 8-4
8.1.6 Tire Pressure 8-5
8.2 Cleaning and Taking Care of the Aircraft
8.2.1 Canopy 8-5
8.2.2 Taking Care of the Interior 8-5
8.2.3 Taking Care of Engine 8-6
8.2.4 Taking Care of Propeller 8-6
8.3 Aircraft Dismantling
8.3.1 Wing Removal 8-7
8.3.2 Horizontal Tail Surfaces Removal 8-8
8.4 Periodic Maintenance of the Aircraft
8.4.1 The first service inspection after 25 hours 8-9
8.4.2 Inspection after every 50 and 100 hours and the annual inspection 8-9
8.4.3 Inspection after every 300 hours 8-20
8.4 Modifications, major repairs and overhauls 8-20
8.5 List of limited lifetime components 8-21
8.1 Ground Handling

Enter the aircraft individually. Loading the aircraft by two persons entering at once may result in unwanted tail tilting of the aircraft and its damage.

8.1.1 Ground Handling the Aircraft

The best way to maneuver the aircraft on the ground is by using the tow bar connected to the nose gear wheel. The tow bar serves for manipulation with an empty aircraft on the ground only. To push the aircraft, it is best to use the wing leading edges (backward movement of the aircraft)

The propeller manufacturers generally prohibit any manipulation with the aircraft by pushing or pulling on the propeller. For more information, please refer to the documentation of the installed propeller.

Pushing or leaning on the control surfaces is prohibited.

Towing the aircraft behind an automobile is prohibited.

8.1.2 Parking

Secure the aircraft against movement at all times when parked. In more severe weather conditions, or when leaving the aircraft for longer period, it is recommended to tie the aircraft down. Activate the parking brake (if installed). The recommended ground aircraft equipment consists of:
- Pitot-static tube protection (cover), located under left wing
- steering blocks (ailerons)
- tie-down set
- textile canopy covers
- textile propeller blade covers
8.1.3 Tie-down

In more severe weather conditions, or when leaving the aircraft for longer period, it is recommended to tie the aircraft down. The tying down is done using anchors and straps, anchoring the nose and main gear. Alternatively, three red tie-down loops, specially designated for this purpose can be used (if installed). If the tie-down loops are used, it is recommended to additionally anchor the aircraft’s landing gear legs as well.

8.1.4 Refueling Procedure

Safety instructions for refueling

- It is prohibited to refuel during rain, storm, in closed space, with the electrical system on, or with the engine running.
- The person performing the refueling mustn’t wear any clothes materials which could produce static electricity.
- Smoking, use of cellphones, static producing device operation, open flame or any electrical device manipulation is prohibited when refueling.

Refueling Procedure

- Ground the aircraft. The aircraft ground point is located on the engine exhaust pipe
- Open the fuel tank cap
- Fill the necessary quantity of fuel

When refueling the aircraft, avoid any contact of the fuel with the aircraft surface. Damage to the surface may occur.

- Remove the grounding wire between the filling device and the aircraft.
- Once the refueling has been completed, wipe fuel tank filler neck and close the fuel tank with a cap.
Prior to refueling, ensure that the aircraft is correctly grounded using the conducting wire (the wire touches the ground), which is found on the left main gear leg. Also ensure that the fuel tank and the filling nozzle are properly grounded. The fuel tank grounding wire should be attached to the exhaust pipe. The exhaust system should be connected with the grounding system of the aircraft.

8.1.5 Checking the Oil Level in the Powerplant

For information on which oil type is recommended for ROTAX engines, please refer to the ROTAX Operation Manual. Do not use additives.

Oil capacity: 3,5 l
Oil consumption: max. 0,06 l/h

Prior to checking the oil level in the powerplant, rotate the engine by manual turning of the propeller, or you can check the oil level in engine that was just running and oil hasn't had time to flow into the engine block.

WARNING

Before manually cranking the propeller, ensure that both ignition switches are in the OFF position and that the engine has sufficiently cooled off (no chance for self-igniting). For safety reasons, always treat the propeller as if though the engine could start at any give time.

WARNING

Never turn the propeller in the opposite direction (clockwise facing the aircraft from the front). Permanent damage to the engine may occur due to oil pressure drop.
Open the access oil lid on the upper engine cowling. To check the oil, unscrew the cap of the oil reservoir, which is found on the engine firewall. Remove the dipstick to check the oil level. The flattened part at the end of the dipstick indicates the oil level range. The upper MAX part indicates the maximum oil level, the bottom MIN part indicates the minimum oil level. Ensure that the oil level remains within these two limits. **The oil level must never drop below the MIN minimum limit.**

8.1.6 Tire Pressure

The tire pressure can be checked without the need for specialized instruments or having to remove any parts.

<table>
<thead>
<tr>
<th></th>
<th>2,5 bar (36 psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main gear wheels tire pressure</td>
<td>2,5 bar (36 psi)</td>
</tr>
<tr>
<td>Nose gear wheel tire pressure</td>
<td>2,5 bar (36 psi)</td>
</tr>
</tbody>
</table>

8.2 Cleaning and Taking Care of the Aircraft

8.2.1 Canopy

The canopy surface should be cleaned using an aircraft windshield cleaner and a micro-fiber cloth only. If the canopy is covered with dust, use clean water first to remove it. Unremoved dust grains may scratch the canopy surface.

CAUTION

Do not use glass cleaner, MEK, acetone, benzene, gasoline, antifreeze or any other products which may cause damage to the plastic materials.

8.2.2 Taking Care of the Interior

Regularly remove dust, dirt or any other particles from the aircraft interior, upholstery or carpets, using a vacuum cleaner. Use suitable products to care for the plastic cockpit parts. Leather interior components and leather upholstery should be cleaned and preserved using suitable products. Only cloths which do not produce static electricity can be used.
8.2.3 Taking Care of Engine

Regularly perform visual inspections of the engine. Ensure that there are no oil, fuel or coolant leaks. Look for any signs of defective seals or faulty connections in the hoses. Ensure that all electrical wires are properly fastened and that the wire protection is not worn out. Ensure that there are sufficient oil, brake fluid, retractable landing gear hydraulic liquid and coolant levels and that there are no leakages in these systems.

Clean the radiators with water, although never with high water pressure cleaner. Should any fault or discrepancy arise, consult a trained specialist prior to operating the engine again.

NOTE

For more information on recommended engine care, please refer to the ROTAX Engine Operation Manual.

8.2.4 Taking Care of Propeller

Carefully inspect the propeller for any signs of scratching or cracks. Clean the blades from bugs and any other dirt. When parking the aircraft, it is recommended to use the blade protection sleeves, which protect from the adverse effects of the environment.

NOTE

For more information on recommended propeller care, please refer to the documentation supplied by the Manufacturer of the propeller installed.

8.3 Aircraft Dismantling

WARNING

When servicing the aircraft, always ensure first that the rescue system is safeguarded against unwanted activation (if installed) and main switch with magnetos are in OFF positions.
8.3.1 Wing Removal

The wing removal will require 3 persons.

Prior to wing removal, prepare supports or mats for storing the half-wings and drain fuel from the wing tanks (if installed on the aircraft). Secure the aircraft against movement (blocks under wheels) and create sufficient space around.

To remove the wing, take the following steps:

1) Extend the flaps to their maximum position
2) Remove the flap slot covers from the bottom part of the wing trailing edge
3) Disconnect the aileron control rods (transverse control) located underneath the flap slot covers
4) Remove the oval shaped covers from the bottom skin of the fuselage center plane
5) Remove the covers from the main landing gear bays to gain access to the inner pins of the main wing spar
6) Remove the four metal plates that secure the inner pins of the main wing spar.
7) From the next step, it is necessary that another person supports the removed wing assembly.
8) Remove the hinge pin of the wing rear beam
9) Remove (slide out) the inner pin of the main wing spar
10) Remove (unscrew) the outer pin of the main wing spar
11) Gently slide the half-wing slightly away from center plane. Do not remove the wing completely yet, but leave a gap between the fuselage and the wing root rib to disconnect the electrical and pitot-static systems. By sliding the wing away, the flap drive system should become disconnected.
12) Disconnect the pitot-static system polyethylene hoses (from the left wing-half only)
13) Disconnect the electrical circuit connectors
14) Disconnect the fuel lines of the fuel tank ventilation
15) Completely slide the wing-half with the cantilever spar out of the fuselage center plane and place the wing onto the prepared supports or mats.
16) Proceed in like manner when removing the other wing-half.

8.3.2 Horizontal Tail Surfaces Removal

The horizontal tail surfaces removal will require 3 persons.

Prior to horizontal tail surfaces removal, prepare supports or mats for proper storage of the dismantled parts. Secure the aircraft against movement (blocks under wheels) and create sufficient space around.

To remove the horizontal tail surfaces, take the following steps:

1) Disconnect the elevators control rods
2) Remove the back horizontal pin of the stabilizer hinge inside the fuselage together with its safety bolt
3) Slide the stabilizer gently away from the pair of front pins by pulling backward. Do not slide the horizontal tail surface out completely yet, but leave gap to disconnect the trim tabs servomotor electrical cables.
4) Disconnect the servomotor electrical connector
5) Now you can slide the horizontal tail surface completely out in backward direction and place onto prepared supports or mats.
8.4 Periodic Maintenance of the Aircraft

8.4.1 The first service inspection after 25 hours

The first 25hr service inspection entails engine inspection, together with oil and filter replacement. This service inspection can only be performed by the Manufacturer, TL-ULTRALIGHT or by a Manufacturer approved service organization or entity (D).

<table>
<thead>
<tr>
<th>Authorization for Maintenance</th>
<th>TL, D</th>
</tr>
</thead>
<tbody>
<tr>
<td>First 25 hour Inspection Checklist</td>
<td>After first 25 hour</td>
</tr>
<tr>
<td>Engine cowling. Remove engine cowling</td>
<td>☐</td>
</tr>
<tr>
<td>Engine. Follow the Operator’s Manual for all versions of ROTAX 912 for instruction of First 25 hours Inspection.</td>
<td>☐</td>
</tr>
<tr>
<td>Pipes and Gascolator. Carefully inspect the tightening of the engine pipes and the state of the fuel gascolator and any filter(s). Clean the fuel gascolator. Check all places carefully where the pipes are attached to metal parts of the engine.</td>
<td>☐</td>
</tr>
<tr>
<td>Tanks filter. Inspect main tank filter. If you discover any signs of debris, rinse tank and fuel system.</td>
<td>☐</td>
</tr>
<tr>
<td>Hydraulic undercarriage lines. Inspect undercarriage retractable system lines. Check for security and evidence of chafing. Check for leaks.</td>
<td>☐</td>
</tr>
<tr>
<td>Engine covers Installation. Assembly back the engine covers</td>
<td>☐</td>
</tr>
</tbody>
</table>

The possibility of dust or other debris being left in the tank or the fuel system from the manufacturing process should not be underestimated. Rinsing of the tank and the fuel system may prevent major contamination.

8.4.2 Inspection after every 50 and 100 hours and the annual inspection

The inspection after every 50 hours of operation is connected with the inspection of engine and replacement of oil and filters, together with the inspection and lubrication of the mechanical parts of the aircraft. The inspection can be performed by the operator (O), a person with an aviation technical competency (T) or by an aviation technology inspector (I), upon obtaining training for performing the 50-hour inspection provided by the Manufacturer, TL-ULTRALIGHT (TL), or by the Manufacturer-approved service organization or entity (D).

The inspection can be performed by the Manufacturer, TL-ULTRALIGHT (TL), or by the Manufacturer-approved service organization or entity (D).
The inspection after every 100 hours of operation or the annual inspection are connected with the inspection of engine and replacement of oil and filters, together with the inspection and lubrication of other parts of the aircraft. The inspection can be performed by a person with an aviation technical competency (T), or by an aviation technology inspector (I), upon obtaining training for performing the 100-hour inspection provided by the Manufacturer, TL-ULTRALIGHT (TL), or by the Manufacturer-approved service organization or entity (D). The inspection can be performed by the Manufacturer, TL-ULTRALIGHT (TL), or by the Manufacturer-approved service organization or entity (D).

The maintenance procedure is as follows:

• Condition inspection checklist
• Aircraft Records checklist
• Run-up checklist
• Post-Run-up checklist
• Propulsion System checklist
• Fuselage checklist
• Wings checklist
• Empennage checklist
• Landing Gear checklist
• Cabin and Baggage Compartment checklist
• Inspection Completion checklist

Condition inspection checklist

<table>
<thead>
<tr>
<th>Aircraft Model / Serial Number</th>
<th>STREAM /</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration Number</td>
<td></td>
</tr>
<tr>
<td>Owner´s Name</td>
<td></td>
</tr>
<tr>
<td>Inspector´s Name</td>
<td></td>
</tr>
<tr>
<td>Date of Inspection</td>
<td></td>
</tr>
<tr>
<td>Engine Model / Serial Number</td>
<td>/</td>
</tr>
<tr>
<td>Airframe Hours</td>
<td></td>
</tr>
<tr>
<td>Engine Hours</td>
<td></td>
</tr>
</tbody>
</table>
Condition inspection checklist

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>50 hour</th>
<th>100 hour</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft logbooks. Determine total times, times since overhaul and time since last required or recommended maintenance and record on Inspection Coversheet</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Safety Directives (SD’s), Airworthiness Directives (AD’s) and Service Bulletins. Check SD’s, AD’s, and Service Bulletins which may need to be complied within the inspection.</td>
<td></td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Aircraft records. Check for presence and condition of aircraft federal registration form and airworthiness certificate.</td>
<td></td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Pilot’s Operating Handbook (POH). Make sure that the last revisions of POH, the Equipment List and Weight and Balance forms are in use.</td>
<td></td>
<td></td>
<td>□</td>
</tr>
</tbody>
</table>

Run-up checklist

<table>
<thead>
<tr>
<th>Type of Inspection</th>
<th>50 hour</th>
<th>100 hour</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELT battery due (if applicable):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altimeter/Transponder test due (if applicable):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strobe lights test due (if applicable):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systems</td>
<td>Pre - inspection</td>
<td>Post - inspection</td>
<td></td>
</tr>
<tr>
<td>Starter</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Oil pressure (PSI)</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Brakes</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Instrument and Avionics</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Navigation and position lights test (if applicable)</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Cabin light test (if applicable)</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Ignition ground test (See Chapter of the Operator’s Manual for all versions of ROTAX)</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Oil temperature (°F)</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

WARNING

Ensure cylinder heads temperature and oil temperature are within limits.
Cabin heat
- [] 50 hour
- [] 100 hour
- [] Annual

Idle RPM
- [] 50 hour
- [] 100 hour
- [] Annual

WARNING

Allow engine to cool to 300 °F (Cylinder heads temperature) before shutdown.

Post – Run - up checklist

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>50 hour</th>
<th>100 hour</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight controls. Check for smooth operation of all flight controls with flaps in retracted and extended positions.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight controls. Check controls within entire range for binding, play, and unusual sounds.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wash clean and vacuum the aircraft. See Washing and Cleaning chapter 8.2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft exterior. Examine the entire aircraft exterior surface for damage, deformation or abrasion.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access panels, covers, and spinner. Remove for inspection to ensure access. Check for missing or unscrewed bolts and nuts.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Propulsion system checklist

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>50 hour</th>
<th>100 hour</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine cowlings. Remove and check engine cowlings for signs of heat damage, leaks or cracks.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Engine Compartment
Check all engine compartment components and engine mount for chafing, loose connections, wear, fluid or exhaust leaks.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cleaning
Clean the engine as required in the Maintenance Manual for ROTAX Engine Type 912 Series.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Engine
Inspect all systems as required in the Maintenance Manual for ROTAX Engine Type 912 Series.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Oil cooler
Check oil cooler and radiator for damage or debris.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cowling ducts
Check cowling ducts for blockage

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Engine oil
Check the level of oil and follow the Operator’s Manual for all versions of ROTAX 912.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Induction system
Check connection of manifold between Air filter box and carburetors. Check for fuel leakage nearby carburetors.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Induction air filter
Inspect for cleanliness and condition of sealing surfaces. Replace filter, if damaged.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuel installation
Inspect the fuel installation, hoses, pumps, connections, and supports. Inspect and clean the fuel filters in the engine area.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cabin heater
Check clamps and heater attachments. Check the manifold for holes and attachments.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Retractable undercarriage hydraulic system
Inspect the hydraulic installation, aggregates, hoses, pumps, connections, and supports. Inspect fluid level. Service, if necessary. Change hydraulic system fluid after every 2 years.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Engine mount
Inspect for cracks, corrosion, loose hardware, chafing by cables, wires, hoses, etc., and make sure that any flexing item is secured to the engine mount.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Engine mount bolts
Inspect and check engine mount bolts.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exhaust system
Check the exhaust springs, the pipe system and its attachment for leaks, cracks on the exhaust pipe and welds.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Battery attachment. Inspect for security of mounting and condition. Ensure vent holes are clear.

Throttle and choke controls. Check operation of throttle and choke controls.

Spinner. Inspect for cracks, security to propeller. Clean inside of spinner.

Propeller hub. Inspect for cracks, corrosion. Retorque all mounting bolts, if loos of torque is suspected on any bolt.

Propeller blades. Inspect for play, dents, nicks, cracks, corrosion, pitting, and leading edge erosion.

Propeller. Check required inspection items detailed in the technical and operational documents of the propeller manufacturer.

Foreign Objects. Check engine compartment for foreign objects.

Fuselage checklist

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>50 hour</th>
<th>100 hour</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin surface. Inspect for obvious latent signs of damage, including cracks, holes, buckling. Check drain holes for obstructions. Check condition of paint and cleanliness.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placards. Inspect for presence and condition.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canopy. Clean Inspect for cleanliness, cracks, condition, and bonding. Check vent operating. Inspect for operating and fit. Inspect hinges, gas strut, latching mechanisms. Lubricate latching pins.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel leaks. Inspect the outer skin tank areas for evidence of fuel stains</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static Port. Check static port for evidence of obstructions. Do not apply compressed air to the system, since this will result in damage to the static air flight instruments.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antennas. Inspect for security and condition.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft identification tag. Inspect for security and legibility.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wings checklist

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>50 hour</th>
<th>100 hour</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wings. Remove wings.</td>
<td></td>
<td>200 hours interval</td>
<td>□</td>
</tr>
<tr>
<td>Main spar pins. Inspect for cracks, corrosion and condition.</td>
<td></td>
<td>200 hours interval</td>
<td>□</td>
</tr>
<tr>
<td>Aileron and flaps control system access. Retract flap on maximum deflection and remove the bottom cover on wing under the flaps for aileron and flaps control system inspection.</td>
<td></td>
<td>200 hours interval</td>
<td>□</td>
</tr>
<tr>
<td>Wing interior. Inspect wing spars, ribs and control system attachment of the wing for signs of cracks or bond failure. Inspect visible areas of ribs and other structures.</td>
<td></td>
<td>200 hours interval</td>
<td>□</td>
</tr>
<tr>
<td>Wing skins. Inspect for obvious signs of damage, including cracks, holes, and buckling. Check condition of paint and placards. Check drain holes for obstructions.</td>
<td></td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Aileron hinges. Inspect for security of attachment to wing. Inspect bearing for condition. Lubricate the hinges bearing</td>
<td></td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Flaps hinges. Inspect for security of rails attachment to wing. Inspect rails, rollers, bearing and whole flaps mechanism for condition. Check condition of rod end attachment. Lubricate the rollers and rails.</td>
<td></td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Ailerons. Inspect skins for damage, looseness, or play in attach bearings. Check for obstruction of drain holes.</td>
<td></td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Flaps. Inspect skins for condition and signs of bond failure. Check hinges for play and attachment to flap. Check for obstruction of drain holes.</td>
<td></td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Wings. Assembly wings</td>
<td></td>
<td>200 hours interval</td>
<td>□</td>
</tr>
</tbody>
</table>
Flap actuator
Assembly wings (if necessary) and run flaps up and down to check for smooth operation.

<table>
<thead>
<tr>
<th>50 hour</th>
<th>100 hour</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Flap deflection
Ensure that flaps extend equally on each side of the airplane in all configurations. Measure the down deflection on each side. The difference in static deflection should not be greater than 1/8 “ (3 mm). Inspect stop switches for operating.

<table>
<thead>
<tr>
<th>200 hours interval</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Flight controls
Inspect all push-pull rods, rod end bearings for condition, play, security of attachment and lubricate.

<table>
<thead>
<tr>
<th>200 hours interval</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Aileron trim tab
Run trim tab on the right aileron up and down to check for smooth operation. Inspect trim tab push-pull lever, rod end bearings for condition, play and security.

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
</tr>
</tbody>
</table>

Pitot tube
Check condition and pitot tube attachment. Check cleanliness of air inlet holes of pitot tube.

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
</tr>
</tbody>
</table>

Empennage checklist

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>50 hour</th>
<th>100 hour</th>
<th>Annual</th>
</tr>
</thead>
</table>
| **Rudder**
 - Visually check surface condition delaminating, deformation, or cracks.
 - Check suspension and security of the rudder upper/lower hinges.
 - Check attachment and security of rudder cables and push-pull rod.
 - Check attachment of rudder bell crank to rudder torque tube.
 - Check for obstruction of drain holes.
 - Check for continuity, full and free travel.
| □ | □ | □ |
| **Rudder angles of deflection**
 - Verify rudder angles of deflection.
| □ | □ | □ |
| **Rudder lubrication**
 - Lubricate upper rudder hinge.
| □ | □ | □ |
| **Horizontal Stabilizer and Elevator**
 - Inspect for visible damage and evidence of latent damage.
 - Inspect looseness or play in hinges.
 - Check for obstruction of drain holes.
 - Check suspension and free travel of the elevator.
| □ | □ | □ |
| **Elevator angles of deflection**
 - Verify elevator angles of deflection.
| □ | □ | □ |
Elevator lubrication. Lubricate elevator hinges.

Horizontal Stabilizer. Remove horizontal stabilizer. Check for surface corrosion and cracks main and rear horizontal stabilizer hinge housings and pins. Inspect for corrosion, cracks, damage and looseness elevator driver and elevator driver rivets attachments. Lubricate horizontal stabilizer hinges. Re-install horizontal stabilizer.

Trim tab. Check trim tab operation, condition and hinge. Lubricate hinges.

Ailerons angles of deflection. Verify ailerons angles of deflection. Check for continuity, full and free travel.

Flight controls. Inspect all push-pull rods, cable, rudder and trim tab control cables, rod end bearings and bell cranks for condition, play, security of attachment and lubricate.

Landing Gear

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>50 hour</th>
<th>100 hour</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual inspection. Inspect from top to bottom for scratches, cracks, corrosion, signs of overstress and side-loading.</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Wheels. Inspect for cracks and corrosion. Check all hardware for signs of loss of torque. Check wheel for free rotation. Inspect tires for splitting, flat spots, wear, and dry-rotting. Check tire pressure, and service as necessary.</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Wheel bearings. Inspect for damage, wear, and corrosion. Check bearing for play, binding and bearing protection plate for condition. Replace bearings if necessary.</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Nose landing gear. Lift up the nose gear and check rotation of the nose gear. Lubricate bearings.</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Hydraulic brake lines. Inspect brake lines. Check for security and evidence of chafing. Check for leaks.</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>
Brake calipers, brake pads and brake discs.
Clean and inspect for condition, fluid leakage, for cracks and corrosion, security of components.
Inspect brake discs for pitting and signs of overheating. Inspect all hardware for signs of loss of torque. Do not lubricate.

Brake fluid reservoir. Inspect for condition, security, and fluid level. Service, if necessary.

Undercarriage retraction mechanism. Inspect for damage, wear, and corrosion. Check hydraulic lines and cylinders for leaks.

Wheel bay covers. Check condition and wheel bay covers attachment (if installed)

Main undercarriage shock absorber. Inspect for damage, wear, and corrosion. Replace the polyurethane cylinder blocks if they are worn or deformed.

Cabin and Baggage Compartments

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>50 hour</th>
<th>100 hour</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seats inspection. Inspect seat structure for general condition and cracks. Inspect cushions and upholstery for condition.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire extinguisher. Remove fire extinguisher (if applicable) and inspect.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety belts. Inspect belts for wear, cuts, and broken stitching. Check all buckles for proper locking and release. Check belt attachments to structure.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avionics and instruments. Check general condition, attachment, and function of the instrument panel, instruments, switches and circuit breakers.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetics compass. Inspect compass correction card for presence and legibility of all headings. Magnetic tools must not be used during this procedure.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel valve. Inspect for operating and signs of fuel leakage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting carb, fuel pump and ventilation. Check function and condition.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Placards. Inspect for presence and condition of all required interior placards. □

Rudder pedals. Inspect for security, cracks, and play. Lubricate □ □

Parking brake. Inspect for security of mounting and signs of leakage. □

Upholstery. Inspect for general condition, attachment, and cleanliness. □

Baggage compartments. Inspect compartment for cleanliness and condition. □

Aircraft Parachute system. Check the condition of the chute handles and safety pins for proper fit. Check for proper clearance and freedom from binding of the chute pull (activation) cable. Check the parachute system in accordance with the manufacturer inspection schedule. □

Inspection Completion

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>50 hour</th>
<th>100 hour</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuselage and wings. Make sure aircraft is free of any tools, parts, and debris, and reinstall all access panels, fairings, seats, and so on, removed for the inspection.</td>
<td>□</td>
<td></td>
<td>□</td>
</tr>
<tr>
<td>Engine. Verify that there is oil in the oil tank, cooling liquid in the expansion tank and coolant level in overflow bottle take place between min. and max. mark as required by the Operator’s Manual for all versions of ROTAX 912, and engine compartment is free of tools, rags, and debris.</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Engine run. Run engine for no more than two minutes at 1400 to 1800. After shutdown, check for leaks at oil filter, and any other components removed during this inspection. Install cowlings, if no leaks are noted.</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Aircraft. Operate engine at 2000 to 2500 RPM to warm it up. Operate all aircraft systems to verify proper operation. As engine warms, operate engine systems at appropriate engine speeds and complete all checks listed on Inspection Coversheet.</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Aircraft records. Complete entries in logbooks, AD and SD compliance lists, and any other required records.</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>
8.4.3 Inspection after every 300 hours

The inspection after every 300 hours of operation is connected with a complete inspection of the engine, as well as of other parts of the aircraft. This inspection can only be performed by the Manufacturer, TL-ULTRALIGHT (TL), or by the Manufacturer-approved service organization or entity (D).

8.4 Modifications, major repairs and overhauls

WARNING

Any modifications, major repairs and overhauls can only be performed by the Manufacturer, TL-ULTRALIGHT (TL), or by an organization or entity, subject to written Manufacturer consent, issued for the individual modification, major repair or overhaul.
8.5 List of limited lifetime components

<table>
<thead>
<tr>
<th>Type of component</th>
<th>Component</th>
<th>Components marking</th>
<th>Airplane variant</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filters</td>
<td>Air filter</td>
<td>ROTAX 825 551</td>
<td>all variants</td>
<td>after every 300 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ROTAX 825 711</td>
<td>all variants</td>
<td>after every 300 hours</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KN Filters R - 1060</td>
<td>all variants</td>
<td>after every 300 hours</td>
</tr>
<tr>
<td></td>
<td>Fuel filter</td>
<td>Gascolator ACS 10580</td>
<td>all variants</td>
<td>on condition</td>
</tr>
<tr>
<td></td>
<td>Oil filter</td>
<td>ROTAX 825012</td>
<td>all variants</td>
<td>after every 100 hours</td>
</tr>
<tr>
<td>Hoses</td>
<td>Fuel system hoses</td>
<td>FUB 386 5/11</td>
<td>all variants</td>
<td>after every 5 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FUB 386 6/12</td>
<td>all variants</td>
<td>after every 5 years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FUB 386 8/14</td>
<td>all variants</td>
<td>after every 5 years</td>
</tr>
<tr>
<td></td>
<td>Engine cooling system hoses</td>
<td>Rubena 402529</td>
<td>all variants</td>
<td>after every 5 years</td>
</tr>
<tr>
<td></td>
<td>Oil hoses</td>
<td>ROTAX 956 390</td>
<td>all variants</td>
<td>after every 5 years</td>
</tr>
<tr>
<td></td>
<td>Undercarriage hydraulic system hoses</td>
<td>DIN EN 853 2SN DN6 WP 400 BAR</td>
<td>all variants</td>
<td>after every 5 years</td>
</tr>
<tr>
<td>Rubber parts</td>
<td>Engine mount rubber blocks</td>
<td>Rubena 40757 / 042757</td>
<td>all variants</td>
<td>after every 5 years</td>
</tr>
<tr>
<td></td>
<td>Carb. bracket rubber blocks</td>
<td>Rubena 40795</td>
<td>all variants</td>
<td>after every 5 years</td>
</tr>
<tr>
<td></td>
<td>Ignition rubber block</td>
<td>ROTAX</td>
<td>all variants</td>
<td>after every 5 years</td>
</tr>
<tr>
<td></td>
<td>Tire – main wheel</td>
<td>size 14 x 4</td>
<td>all variants</td>
<td>on condition</td>
</tr>
<tr>
<td></td>
<td>Tire – front wheel</td>
<td>size 11 x 4</td>
<td>all variants</td>
<td>on condition</td>
</tr>
<tr>
<td>Metal parts</td>
<td>Brake disc</td>
<td>14 x 4 wheel brake disc</td>
<td>all variants</td>
<td>on condition</td>
</tr>
<tr>
<td></td>
<td>Brake pads</td>
<td>14 x 4 wheel brake pads</td>
<td>all variants</td>
<td>on condition</td>
</tr>
<tr>
<td></td>
<td>Metal plates under the engine</td>
<td>STREAM-71-20-002-000-L/P</td>
<td>all variants</td>
<td>after every 300 hours</td>
</tr>
<tr>
<td>Engine parts</td>
<td>Ignition sparks</td>
<td>see the current Operator’s Manual for all version of ROTAX 900 series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil</td>
<td>see the current Operator’s Manual for all version of ROTAX 900 series</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling fluid</td>
<td>see the current Operator’s Manual for all version of ROTAX 900 series</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Braking fluid</td>
<td>DOT 5</td>
<td>all variants after every 2 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undercarriage hydraulic system fluid</td>
<td>ISO VG 32 (PARAMO OT-HP3)</td>
<td>all variants after every 2 years</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAUTION

For current and complete information regarding list of disposable replacement engine and propeller parts, please see the Maintenance Manual for ROTAX Engine Type 900 Series, the Manual for Propeller and Rescue system supplied with the aircraft.
9. SUPPLEMENTS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Required placards & markings</td>
<td>9-2</td>
</tr>
<tr>
<td>9.2</td>
<td>Placards</td>
<td>9-2</td>
</tr>
<tr>
<td>9.3</td>
<td>External markings</td>
<td>9-5</td>
</tr>
</tbody>
</table>
9.1 Required placards & markings

This section contains a list of both placards and markings located inside the cockpit and on the exterior of the aircraft. These placards and markings provide guidance, instruction, or warning. It is the responsibility of the owner/pilot to understand and comply with the directions of both the placards and markings.

9.2 Placards

Attached to the safety pin on the parachute system activation handle:

![Safety Pin, Remove Before Flight]

On the instrument panel in pilot's field of vision:

![All Aerobatic Maneuvers Including Intentional Spins Prohibited]

On the instrument panel in pilot's field of vision:

![Flap Speed Limits 76 knots - Half 65 knots - Full]
On the instrument panel in pilot’s field of vision:

Flight operations in IMC are PROHIBITED

On the instrument panel in pilot’s field of vision:

WARNING

On the canopy:

TL-ULTRALIGHT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass index</td>
<td>1.5</td>
</tr>
<tr>
<td>Max. takeoff weight</td>
<td>470 kg</td>
</tr>
<tr>
<td>Max. max. weight</td>
<td>480 kg</td>
</tr>
<tr>
<td>Max. max. 15 min</td>
<td>480 kg</td>
</tr>
<tr>
<td>Max. max. weight</td>
<td>480 kg</td>
</tr>
<tr>
<td>Max. max. 15 min</td>
<td>480 kg</td>
</tr>
<tr>
<td>Max. max. weight</td>
<td>480 kg</td>
</tr>
<tr>
<td>Max. max. 15 min</td>
<td>480 kg</td>
</tr>
<tr>
<td>Max. max. weight</td>
<td>480 kg</td>
</tr>
<tr>
<td>Max. max. 15 min</td>
<td>480 kg</td>
</tr>
<tr>
<td>Max. max. weight</td>
<td>480 kg</td>
</tr>
<tr>
<td>Max. max. 15 min</td>
<td>480 kg</td>
</tr>
<tr>
<td>Max. max. weight</td>
<td>480 kg</td>
</tr>
<tr>
<td>Max. max. 15 min</td>
<td>480 kg</td>
</tr>
</tbody>
</table>

Note: The performance data is for reference only and not guaranteed.
Maximum load weight in front luggage compartment:

![Maximum 10 KG Load]

Maximum load weight in back luggage compartment:

![Maximum 15 KG Load]

Marking of a 12V socket (if installed):

![12V Socket]
9.3 **External markings**

Around the main fuel tank cap on fuselage:

![Fuel Tank Cap](image1)

Around main fuel tank vent tube (wing tip area):

![Fuel Vent](image2)

Around drain valves on the bottom side of fuselage:

![Fuel Drain](image3)
Around areas, where static pressure is collected, in the back part of fuselage:

Marking on control surfaces (ailerons, flaps, elevator, rudder):

NO PUSH

Marking on the trim:

NO LIFT

Nose gear wheel tire pressure:

2,5 bar 36 PSI

Main gear wheels tire pressure:

2,5 bar 36 PSI
On the safety parachute system cover and on the vertical tail surface:

![Parachute Egress and Safety Symbols](image-url)